Lecture 1: Function approximation

Administrative details

- Macro PhD sequence
 - Quantitative Macro Theory (this part)
 - Consumption
- One common exam for the two parts
- Exam format:
 - One computer project
 - Text of the project distributed in February.
 - Solution discussed in an individual oral presentation with Roman Sustek and myself on Monday 10th March.

1 Introduction to the course

Roadmap for this part

- Aim of the course: learning to solve dynamic programming problems.
- Necessary tools from numerical analysis
 - Function approximation
 - Numerical integration
 - Numerical optimization (just a hint).
- Putting it all together: solving the Bellman equation Two methods:
 - Discretized value function iteration.
 - The method of endogenous grid points (time permitting).

Readings for this lecture

- 1. Section 3.2 in LS (just skim it, to frame the problem)
- 2. The notes on "Function Approximation" by Wouter den Haan at http://tinyurl.com/5tv93vr
- 3. Chapter 6 (selectively) in Judd (1998)

A dynamic optimization problem

• Consider the stochastic control (sequence) problem of choosing $\{u_t, x_{t+1}\}$

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t r(x_t, u_t), \ 0 < \beta < 1$$

s.t. $x_{t+1} = g(x_t, u_t, \epsilon_t)$
 x_0, ϵ_0 given.

with ϵ_t i.i.d. with density function $G(\epsilon)$.

• The solution is an (infinite) sequence $\{u_t, x_{t+1}\}_{t=0}^{\infty}$ for each possible history of the shock $\{\epsilon_t\}_{t=0}^{\infty}$.

The (equivalent) dynamic programming problem

• The dynamic programming (recursive) counterpart of the above problem is

$$V(x) = \max_{u} r(x, u) + \beta \mathbb{E} V(g(x, u, \epsilon))$$

• The solution is a pair of functions $\{u(x), V(x)\}$.

Numerical versus analytical solutions

- Computers can only deal with finite-dimensional objects. Namely
 - 1. Finitely large or small (rational) numbers.
 - 2. Finite series.
- Numerical solution are always approximate. Two sources of error.
 - 1. Roundoff error. Real numbers are approximated by the nearest rational number.
 - 2. Truncation error. Functions are approximated by finite series or other discrete representations.

E.g. The order of approximation in a Taylor series expansion is bounded above.

Numerical solution to dynamic programming problems

In solving a functional equation like

$$V(x) = \max_{u} r(x, u) + \beta \mathbb{E} V(g(x, u, \epsilon))$$

we have to tackle the following general problems.

1. How to approximate the unknown functions u and V

- 2. How to approximate the integral in the expectation
- 3. How to solve the maximization step

These correspond to the following areas of numerical analysis.

- 1. Function approximation.
- 2. Numerical integration.
- 3. Numerical optimization.

2 Function approximation

Function approximation

To approximate a function

f(x)

when f(x) is

- 1. known but too complex to evaluate; or
- 2. unknown but we have some information about it; namely
 - we know its value (and/or that of its derivatives) at some points
 - we know the system of (functional) equation it satisfies.

Information available

- Finite set of derivatives
 - Usually at one point \rightarrow local approximation methods
 - Function is differentiable
 - e.g. Taylor method
 - usually inaccurate away from chosen point
- Set of function values \rightarrow **projection methods**
 - $-f_0, \cdots, f_m$ at m nodes x_0, \cdots, x_m
 - -m is usually finite

3 Function approximation: projection methods

3.1 General specification of projection method

Projection methods

• We want to approximate a (known or unknown) function $f(x) : \mathbb{R} \to \mathbb{R}$ that solves a functional equation of the form

$$\mathcal{H}(f(x)) = 0 \text{ for } x \in X \subseteq \mathbb{R}$$

• (Linear) projection method solve the problem by specifying an approximating function

$$f^n(x;\theta) = \sum_{i=0}^n \theta_i \Psi_i(x)$$

• Namely, choose a basis $\{\Psi_i(x)\}_{i=0}^n$ and project $f(\cdot)$ onto the basis to find the vector $\theta = \{\theta_i\}_{i=0}^n$.

Remarks

- Very general framework/representation. It captures most problems of interest.
- In general same number of parameters as basis functions.
- Linear projection; i.e. linear combination of basis functions. Very similar to OLS. Theory of non-linear approximations (e.g. neural networks) is not as well developed and possibly overkill for most economics.
- We first discuss the case in which $f : \mathbb{R} \to \mathbb{R}$. Easily generalized (with some complications) later.

Algorithm

- 1. Choose *n* known, linearly-independent basis functions $\Psi_i(x) : \mathbb{R} \to \mathbb{R}$.
- 2. Define the linear projection

$$f^n(x;\theta) = \sum_{i=0}^n \theta_i \Psi_i(x)$$

3. Plug $f^n(x;\theta)$ into $\mathcal{H}(\cdot)$ to obtain the residual function

$$R(x;\theta) = \mathcal{H}(f^n(x;\theta))$$

4. Find θ such that weighted averages with weight functions $\phi_i(x)$, of the residual function are zero

$$W_i(\theta) = \int_{x \in X} \phi_i(x) R(x;\theta) dx = 0, \quad i = 0, \cdots, m$$

Interpolation

- m weighted residual equations $W_i(\theta) = 0$. We need $m \ge n$ for θ to be determined.
- Finite $m = n \rightarrow$ interpolation
 - $-\theta$ is such that the residual equation is zero at the (interpolation) nodes x_i

$$R(x_j;\theta) = 0, \quad j = 0, \cdots, m$$

- Obtains if the weight functions $\phi_i(x) = 1$ at the interpolation nodes x_i and are zero otherwise.

3.2Approximating a known function

Approximating a function by interpolation

- Function is known but is too costly to compute. We want to approximate it.
- Subcase of the general one.
- Functional equation used is

$$\mathcal{H}(f(x_j)) = f_j - f(x_j) = 0, \quad j = 0, \cdots, m.$$

• The residual function is

$$R(x_j;\theta) = f_j - \sum_{i=0}^n \theta_i \Psi_i(x_j), \quad j = 0, \cdots, m$$

• Interpolation solves

$$f_j = \sum_{i=0}^n \theta_i \Psi_i(x_j).$$

Compare to OLS

Let

$$Y = \begin{bmatrix} f_0 \\ \vdots \\ f_n \end{bmatrix}, \quad X = \begin{bmatrix} \Psi_0(x_0) & \cdots & \Psi_n(x_0) \\ \vdots & \ddots & \vdots \\ \Psi_0(x_n) & \cdots & \Psi_n(x_n) \end{bmatrix}.$$

Then

$$Y = X\theta.$$

τ.

- Same number of points as parameters to determine. Is the problem as bad as it would be in empirical work?
- What happens if we decide to increase n?
- Important when choosing basis.

Choice of basis

- 1. Spectral methods: each element of the basis is non-zero for almost all $x \in X$ (global basis).
 - E.g. monomial basis $\{1, x, x^2, ..., x^n\}$.
- 2. Finite elements methods: divide X into non-intersecting subdomains (elements). Set the weighted residual functions to zero on each of the elements.
 - Splines: e.g. piecewise linear interpolation.

3.3 Spectral bases

Spectral bases: polynomials

Theorem 1 (Weierstrass) A function $f : [a, b] \to \mathbb{R}$ is approximated "arbitrarily well" by the polynomial

$$\sum_{i=0}^{n} \theta_i x^i$$

for n large enough.

- f does not need to be continuous
- but n may have to be large to get a good approximation if f is discontinuous.

Spectral bases: monomials

$$\Psi_i(x) = x^i \quad i = 0, \cdots, n$$

- Simple and intuitive
- Problems:
 - Near multicollinearity
 - Vary considering in size \rightarrow scaling problems and accumulation of numerical error
- We want an orthogonal basis.

Spectral bases: orthogonal polynomials

• Choose orthogonal basis functions; i.e.

$$\int_{a}^{b} \Psi_{i}(x)\Psi_{j}(x)w(x)dx = 0, \quad \forall i, j \text{ with } i \neq j$$

• Different families associated with different weighting function w(x) and ranges [a, b].

Spectral bases: Chebyshev orthogonal polynomials

- [a,b] = [-1,1] and $w(x) = \frac{1}{(1-x^2)^{1/2}}$
- The basis functions may more easily be recovered from the recursive formula

$$\begin{split} \Psi_0^c(x) &= 1 \\ \Psi_1^c(x) &= x \\ \Psi_i^c(x) &= 2x \Psi_{i-1}^c(x) - \Psi_{i-2}^c(x) \end{split}$$

Chebyshev nodes

- The n^{th} -order Chebyshev basis function has n zeros
- These are the n Chebyshev nodes for an n^{th} -order approximation
- They satisfy the formula

$$z_{j-1} = -\cos\left(\frac{2j-1}{2n}\pi\right) \quad j = 1, \cdots, n$$

Some Chebyshev polynomials

Chebyshev interpolation over a generic interval

- Suppose $f(x), f: [a, b] \to \mathbb{R}$
- Chebyshev polynomials are defined over [-1, 1]
- Find the points in [a, b] corresponding to the Chebyshev nodes z_j

$$x_j = a + \frac{z_j + 1}{2}(b - a)$$

- Calculate the functions values $f_j = f(x_j)$ at the nodes x_j
- θ solves the projection system

$$f_j = \sum_{i=0}^n \theta_i \Psi_i^c(z_j) \quad j = 0, \cdots, n$$

Orthogonality at the nodes

• The Chebyshev polynomials evaluated at the nodes satisfy the orthogonality property

$$\sum_{j=0}^{n} \Psi_i^c(z_j) \Psi_k^c(z_j) = 0 \text{ for } i \neq k$$

• It follows that if

$$X = \begin{bmatrix} \Psi_0^c(z_0) & \cdots & \Psi_n^c(z_0) \\ \vdots & \ddots & \vdots \\ \Psi_0^c(z_n) & \cdots & \Psi_n^c(z_n) \end{bmatrix}.$$

then X'X is a diagonal matrix

- Each θ_i is just a function of $\Psi_i^c(z_j)$ and $f(x_j)$
- Of course... omitting a variable orthogonal to the included regressors has no effect on the regression coefficients

Uniform convergence

- Weierstrass theorem implies there is always a polynomial that gives a good enough approximation
- It does not imply that the quality of *any* approximation improves monotonically as the order increases.
- Instead, the polynomial approximation converges uniformly to the function to be approximated if the polynomials are fitted on the Chebyshev nodes.

Chebyshev regression

- Like standard regression
- n nodes but polynomial of degree m < n
- Trade-off between the various points (no longer exact approximation at the nodes)

3.4 Finite elements

Finite elements: splines

- Spectral (polynomial) methods use the same polynomial over the whole domain of \boldsymbol{x}
- Finite element methods split the domain of x into non-intersecting subdomains (elements) and fit a different polynomial for each element
 - Advantageous if the function can only be approximated well by a high order polynomial over the entire domain but by low-order polynomials over each subdomain
 - Elements do not need to have equal size: can be smaller in regions were the function is more "difficult"
- n+1 nodes x_0, \dots, x_n and corresponding function values f_0, \dots, f_n
 - Still interpolation

Finite elements as projection

- Two equivalent ways to think about finite elements/splines as a projection method.
 - 1. They fit to each subinterval basis functions which are non-zero over most of the subinterval
 - Polynomial bases in the case of splines
 - 2. They fit the same set of basis functions to all the domain of x but the functions are zero over most of the interval. The basis functions apply to all the domain but they are zero
- Example: step function
 - 1. The basis functions $\Psi_0 = 1$ in all subintervals
 - 2. The basis functions are $\Psi_i = \mathbb{I}_{x_i \leq x < x_{i+1}}$ where \mathbb{I} is the indicator function.

Finite elements: piece-wise linear splines

• For $x \in [x_i, x_{i+1}]$

$$f(x) \approx f^{1}(x) = \left(1 - \frac{x - x_{i}}{x_{i+1} - x_{i}}\right) f_{i} + \left(\frac{x - x_{i}}{x_{i+1} - x_{i}}\right) f_{i+1}$$

• One can think of the two terms in parentheses as the two basis in each interval and the function values as the associated coefficients

Finite elements: piece-wise linear splines

- Piece-wise linear splines preserve shape, namely monotonicity and (weak) concavity.
- Yet they are non-differentiable at the nodes.
- Easily solved by fitting higher order polynomial in each subdomain.

Finite elements: higher order splines

- Still n + 1 nodes and associated function values.
- Now second order polynomial in each interval

$$f(x) \approx f^2(x) = a_i + b_i x + c_i x^2$$
 for $x \in [x_i, x_{i+1}]$

• Now we have 3n parameters to determine

Quadratic splines: levels

- 2 + 2(n-1) value matching conditions as in the linear case.
 - For the intermediate nodes the quadratic approximations on both sides have to coincide; e.g.

$$f_1 = a_1 + b_1 x_1 + c_1 x_1^2$$

$$f_1 = a_2 + b_2 x_1 + c_2 x_1^2$$

• Only one quadratic has to satisfy value matching at the two endpoints x_0 and x_n .

Quadratic splines: slopes

• Differentiability at the intermediate nodes requires smooth pasting (same derivatives on both sides); e.g.

$$b_1 + 2c_1x_1 = b_2 + 2c_2x_1$$

- n-1 more conditions
- We need one more: arbitrary.
 - e.g. set slope at one of the two terminal nodes equal to some value.

Shape-preserving splines

- Higher order splines do not preserve monotonicity and concavity in general.
- Schumacher splines do

4 Extensions

Functions of more than one variable

- Extending polynomial approximation to variables of more than one variable is relative straightforward (but curse of dimensionality)
- n^{th} -order approximation to the function f(x,y)
 - Complete polynomial

$$\sum_{i+j \le n} \Psi_i(x) \Psi_j(y)$$

- Tensor product polynomial

$$\sum_{i,j \le n} \Psi_i(x) \Psi_j(y)$$

Lecture 2: Numerical integration and contraction mappings

Roadmap for this part

- Numerical integration
 - Quadrature techniques
 - * Newton Cotes
 - * Gaussian quadrature
 - Monte Carlo
- Bellman equation and the contraction mapping theorem.

Readings for this lecture

- 1. The notes on "Numerical Integration" by Wouter den Haan at
 http://tinyurl.com/6cbrqqr
- 2. Chapters 7.2, 8.1 and 8.2 in Judd (1998)
- 3. Chapter 3 and Theorem 4.6 in (SL) and appendix A in (LS).

1 Numerical integration

1.1 Quadrature techniques

Quadrature techniques

Approximating an integral by a finite sum

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} \omega_{i} f(x_{i})$$

- Newton Cotes
 - Arbitrary (usually equidistant) nodes x_i and efficient weights ω_i
 - Will not consider further
- Gaussian quadrature
 - Both nodes and weights chosen efficiently

1.1.1 Gaussian quadrature

Gaussian quadrature

• Exact integration of

$$\int_{a}^{b} f(x)w(x)dx$$

if f(x) is a polynomial of order 2n-1

- -7 nodes give exact integration for polynomials up to order 13!
- Different families for different [a, b] and different weighting functions w(x)
- Good approximation if f(x) is well approximated by polynomial of order up to 2n-1

Gaussian-Legendre quadrature

- Defined over [-1, 1], w(x) = 1
- Exact integration of

$$\int_{a}^{b} f(x) dx$$

if f(x) is a polynomial of order 2n-1

• For generic [a,b] rescale Gauss-Legendre nodes x_i^{GL} and weights ω_i^{GL} using

$$x_i = a + \frac{x_i^{GL} + 1}{2}(b - a)$$
$$\omega_i = \frac{b - a}{2}\omega_i^{GL}$$

Practical implementation

- Generate n Gauss-Legendre nodes x_i^{GL} and weights ω_i^{GL} with appropriate computer subroutine
- Rescale nodes

$$x_i = a + \frac{x_i^{GL} + 1}{2}(b - a)$$

• Solution equals

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} \omega_{i}f(x_{i}) = \frac{b-a}{2} \sum_{i=1}^{n} \omega_{i}^{GL}f(x_{i})$$

- REMARK: x_i^{GL} and ω_i^{GL} depend just on n NOT on f(x)
 - What determines nodes and weights?

Gauss-Legendre nodes and weights

- 2n unknows: n nodes $x_i^{GL} + n$ weights ω_i^{GL}
- Chosen to ensure exact integration for polynomial of order 2n 1 over [-1, 1] interval
 - Monomial $f(x) = 1^1$

$$\int_{-1}^{1} 1 dx = \sum_{i=1}^{n} \omega_i^{GL} 1$$

– Monomials $f(x) = x^j$

$$\int_{-1}^{1} x^{j} dx = \sum_{i=1}^{n} \omega_{i}^{GL} (x_{i}^{GL})^{j} \quad j = 1, \cdots, 2n - 1$$

-2n equations in 2n unknowns

What about general polynomial functions

- A generic polynomial is a linear combination of monomials
- Exact integration for any polynomial of order 2n-1

1.1.2 Gaussian-Hermite quadrature

Gaussian-Hermite quadrature

- Defined over $[-\infty, +\infty]$, $w(x) = e^{-x^2}$
- Used for expectations of functions of normally distributed random variables
- We want to find nodes x_i and weights ω_i such that

$$\int_{-\infty}^{+\infty} f(x)e^{-x^2}dx \approx \sum_{i=1}^{n} \omega_i f(x_i)$$

- Cfr. Gaussian-Legendre
 - weighting function e^{-x^2} instead of 1
 - even if f(x) is well approx. by a polynomial, $f(x)e^{-x^2}$ is not

¹The rescaling $\omega_i = (b-a)\omega_i^{GL}/2$ comes from the fact that $\int_{-1}^1 1dx = 2 = \sum_{i=1}^n \omega_i^{GL} 1$ and $\int_a^b 1dx = b - a = \sum_{i=1}^n \omega_i 1$.

Practical implementation

- Generate n Gauss-Hermite x_i^{GH} and weights ω_i^{GH} with appropriate computer subroutine
- Solution equals

$$\int_{-\infty}^{+\infty} f(x)e^{-x^2}dx \approx \sum_{i=1}^{n} \omega_i^{GH} f(x_i^{GH})$$

• REMARK: weighting function e^{-x^2} is captured by the weights.

Expectations of functions of normally distributed r.v.

- Suppose $x \sim N(\mu, \sigma)$
- Expectation of f(x) is

$$\mathbb{E}[f(x)] = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} f(x) e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

• Not quite Gauss-Hermite weighting function, we need a change of variable

Change of variable

• Define the auxiliary variable $y = \frac{x-\mu}{\sqrt{2}\sigma}$ which implies

$$x = \mu + \sqrt{2}\sigma y, \quad dx = \sqrt{2}\sigma dy$$

• Replacing on RHS of $\mathbb{E}[f(x)] = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} f(x) e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$

$$\mathbb{E}[f(x)] = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} f(\mu + \sqrt{2}\sigma y) e^{-y^2} dy$$

• Defining $x_i = \mu + \sqrt{2}\sigma x_i^{GH}$ yields

$$\mathbb{E}[f(x)] \approx \sum_{i=1}^{n} \omega_i f(x_i) = \sum_{i=1}^{n} \frac{1}{\sqrt{\pi}} \omega_i^{GH} f(x_i)$$

Practical implementation

- Generate n Gauss-Hermite nodes x_i^{GH} and weights ω_i^{GH} with appropriate computer subroutine
- Rescale nodes

$$x_i = \mu + \sqrt{2}\sigma x_i^{GH}$$

• Solution equals

$$\mathbb{E}[f(x)] \approx \sum_{i=1}^{n} \frac{1}{\sqrt{\pi}} \omega_i^{GH} f(x_i)$$

• REMARK: μ and σ just affect x_i .

Persistent processes

- If x follows an AR(1) process its conditional mean changes over time.
- Set of Gauss-Hermite nodes expands with time.
- Solutions (reference: lecture notes by Karen Kopecky at http://tinyurl.com/2cxw4rs)
 - Tauchen (86) method
 - Tauchen and Hussey (91) method
 - Rouwenhorst (95) method

1.2 Monte Carlo integration

Monte Carlo Integration

• Read the relevant section in Judd.

2 The Contraction Mapping theorem

Theorem of the maximum

Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^m$. Let $\Gamma : X \to Y$ and $f : X \times Y \to \mathbb{R}$. Consider the problem of choosing $y \in \Gamma(x)$ to maximize the function f(x, y). Let

$$h(x) = \max_{y \in \Gamma(x)} f(x, y)$$
$$\hat{y}(x) = \arg\max_{y \in \Gamma(x)} f(x, y)$$

Theorem 2 (Theorem of the Maximum) Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^m$. Let $\Gamma : X \to Y$ be a compact-valued and continuous correspondence and $f : X \times Y \to \mathbb{R}$ be a continuous function. Then

- 1. $\hat{y}(x)$ is a non-empty and compact-valued correspondence;
- 2. h(x) is a continuous function.

Important property of the Bellman equation

$$v_t(x_t) = \max_{x_{t+1} \in \Gamma(x_t)} F(x_t, x_{t+1}) + \beta v_{t+1}(x_{t+1})$$
(BE)

Assumption 1 (Assumption 1) $x_t \in X \subseteq \mathbb{R}^n$, $\Gamma : X \to X$ is a continuous and compact-valued correspondence and $F : X \times X \to \mathbb{R}$ is a continuous function.

Corollary 1 If Assumption 1 is satisfied and $v_{t+1} : \mathbb{R}^n \to R$ is a continuous function, then v_t is a continuous function.

- Bellman equation (BE) maps the space $C^0(X)$ onto itself
- Proof: straightforwardly from Theorem of the Maximum

Finite horizon dynamic programming

$$v_t(x_t) = \max_{x_{t+1} \in \Gamma(x_t)} F(x_t, x_{t+1}) + \beta v_{t+1}(x_{t+1})$$

with $t \leq T < \infty$ and $v_{T+1} = 0$.

• If Assumption 1 is satisfied then $\hat{x}_{t+1}(x_t)$ is a non-empty, compact-valued correspondence and $v_t(x_t)$ is a continuous function.

- At t = T it is $v_T(x_T) = \max_{x_{T+1} \in \Gamma(x_T)} F(x_T, x_{T+1})$

– At any t < T it follows from the previous corollary

• Solution $\{\hat{x}_{t+1}(x_t), v_t(x_t)\}_{t=0}^T$ also found by backward induction

Infinite horizon dynamic programming

$$v_t(x_t) = \max_{x_{t+1} \in \Gamma(x_t)} F(x_t, x_{t+1}) + \beta v_{t+1}(x_{t+1})$$

• Indeed the problem is stationary. The solution is a pair $\{x'(x), v(x)\}$ solving

$$v(x) = \max_{x' \in \Gamma(x)} F(x, x') + \beta v(x')$$

- Problem: no terminal date from which to start backward induction
 - Does a solution exist?
 - If a solution exists, how can we find it?

Main result (to prove)

- (Existence) If Assumption 1 is satisfied the infinite horizon dynamic programming problem has a unique solution
- (Solution) The solution can be found by iterating on the Bellman equation

$$v^{n+1}(x) = \max_{x' \in \Gamma(x)} F(x, x') + \beta v^n(x')$$

starting from any continuous function v^n .

- Same as finite horizon but starting from any arbitrary "guess" function.
- ... but a better guess implies faster convergence!

Existence (to prove)

Let

$$T(v) = \max_{x' \in \Gamma(x)} F(x, x') + \beta v(x')$$

- Mapping T(v) is a functional (maps fns into fns)
- The Bellman equation has a solution if T(v) has a fixed point

$$v^* = T(v^*)$$

• We need a fixed-point theorem for functionals

Mathematical preliminaries

Definition 1 A metric space is a set S together with a distance function $\rho : S \times S \to \mathbb{R}$, such that for all $x, y, z \in S$:

1. $\rho(x, y) \ge 0$ with equality iff x = y;

2.
$$\rho(x, y) = \rho(y, x);$$

3. $\rho(x, z) \le \rho(x, y) + \rho(y, z)$.

Mathematical preliminaries II

Definition 2 A sequence $\{x_n\}_{n=0}^{\infty}$ in a metric space (S, ρ) converges to $x \in S$ if for each real scalar $\epsilon > 0$ there exists N_{ϵ} such that

$$\rho(x_n, x) < \epsilon$$
, for all $n > N_{\epsilon}$.

Definition 3 A sequence $\{x_n\}_{n=0}^{\infty}$ in a metric space (S, ρ) is **Cauchy** if for each real scalar $\epsilon > 0$ there exists N_{ϵ} such that

$$\rho(x_n, x_m) < \epsilon, \text{ for all } n, m > N_{\epsilon}.$$

Cauchy vs convergent sequences

- The first definition requires knowledge of the limit point x to be operational.
- The second definition does not, but
 - a convergent sequence in a metric space (S, ρ) is Cauchy
 - a Cauchy sequence in a metric space (S, ρ) may be convergent only in a metric space other than (S, ρ)

E.g. Let S be the set of rational number and $\rho(x, y) = |x - y|$. The sequence

$$x_n = \left(1 + \frac{1}{n}\right)^n$$

is Cauchy in (S, ρ) but its limit is the irrational number e.

Complete metric spaces

Definition 4 A metric space (S, ρ) is complete if every Cauchy sequence in (S, ρ) converges to a limit in S.

- For complete metric spaces the convergence of a sequence can be verified by means of the Cauchy criterion.
- Working with complete metric spaces is easier.

Normed vector spaces

Definition 5 A real vector (or linear) space is a set $X \subseteq \mathbb{R}^n$ together with two operations - addition and multiplication by a real scalar - such that it has a zero element and is closed under the two operations.

Definition 6 A normed vector space is a vector space S, together with a norm $|| \cdot || : S \to \mathbb{R}$ such that for all $x, y \in S$ and $\alpha \in \mathbb{R}$

- 1. $||x|| \ge 0;$
- 2. $||\alpha x|| = |a| \cdot ||x||;$
- 3. $||x + y|| \le ||x|| + ||y||.$

Metric vs normed vector spaces

Remark 1 For a normed vector space $(S, || \cdot ||)$ a metric can be defined by means of the norm $|| \cdot ||$; namely for all $x, y \in S$

$$\rho(x, y) = ||x - y||.$$

• Every normed vector space is a metric vector space under the above metric.

Banach spaces

Definition 7 A **Banach space** is a complete normed (metric) vector space.

Theorem 3 Let $X \subseteq \mathbb{R}^n$. The space $C^0(X)$ of bounded continuous functions $f: X \to \mathbb{R}$ together with the sup norm $||f||_{\infty} = \sup_{x \in X} |f(x)|$ is a Banach space.

Contraction mapping

Definition 8 Let (S, ρ) be a metric space and $T : S \to S$ a function. T is contraction mapping (with modulus β) if for some $\beta \in (0, 1)$ it is $\rho(T(x), T(y)) \leq \beta \rho(x, y)$ for all $(x, y) \in S$.

- A contraction mapping on S shrinks the distance between any two points in S.
- The application of a contraction mapping on (S, ρ) generates a Cauchy sequence.

Contraction mapping theorem

Theorem 4 (Contraction mapping theorem) If (S, ρ) is a complete metric space and $T: S \to S$ is a contraction mapping with modulus β , then

- 1. T has a unique fixed point in S;
- 2. for any $v^0 \in S$, $\rho(T^n(v^0), v) \leq \beta^n \rho(v_0, v)$.

Blackwell sufficient conditions

Theorem 5 (Blackwell sufficient conditions) Let $X \in \mathbb{R}^n$ and B(x) a space of bounded functions $f : X \to X$ equipped with the sup norm. An operator $T : B(X) \to B(X)$ is a contraction mapping if it satisfies

- 1. (monotonicity) given $f, g \in B(x)$ and $f(x) \leq g(x)$ for all $x \in X$ it is $T(f) \leq T(g)$ for all $x \in X$;
- 2. (discounting) there exists $\beta \in (0,1)$ such that

$$T(f(x) + a) \le T(f(x)) + \beta a$$
, for all $f \in B(X)$, $x \in X$, $a \ge 0$

At last...

Assume that:

- Assumption 1 holds;
- either F(x, x') $x, x' \in X$ is bounded or X is compact.

Then

- the Bellman operator $T(v) = \max_{x' \in \Gamma(x)} F(x, x') + \beta v(x')$ maps $C^0(x)$ onto itself
- The space $(C^0(X), || \cdot ||_{\infty})$ is a Banach space
- If T(v) is a contraction mapping it has a unique fixed point in $C^{0}(x)$
- T(v) satisfied Blackwell sufficient conditions
- Discounted dynamic programming problems with bounded returns have a unique solution.

Approximation Error bound

• The Contraction Mapping Theorem bounds the distance between the n-th iteration and the true (limit) value by

$$\rho(T^n v^0, v) \le \beta^n \rho(v^0, v)$$

- Interesting but not operational as v is in general unknown.
- Operational bound

$$\rho(T^n v^0, v) < \frac{1}{1 - \beta} \rho(v^n, v^{n+1})$$

• Can be used to establish convergence up to desired tolerance!

Lecture 3: Two solution methods for DP problems

Roadmap for this part

- A refresher of optimization
- Two solution methods for DP problems.
 - Discretized value function iteration
 - The method of endogenous grid points

Readings for this lecture

- 1. p. 99-100 in Judd (1998)
- 2. Chapters 4.1-4.5 in LS
- 3. Carroll (2006) and Barillas Villaverde (2007).

1 A refresher of optimization

Locating maxima

- Theorem of the maximum gives sufficient conditions for existence of a maximum.
 - If objective is not continuous we are on shaky ground
 - We assume continuity in what follows
- How to locate a maximum
 - Non-differentiable vs differentiable problems
 - Concave vs non-concave problems

Locating maxima (non-differentiable problems)

- We cannot use first-order conditions
- We need to use global comparison methods
 - Optimization on a discrete domain (effectively grid search)
 - * Always a good starting point
 - $\ast\,$ If maxim and is continuous it finds an approximate global max
 - $\ast\,$ The finer the grid the better the approximation
 - Polytope methods
- Concave problem
 - Unique maximized value for objective
 - Strictly concave: unique maximum

Locating maxima (differentiable problems)

- First order condition (FOC) is necessary for a maximum
 - Reduces maximization problem to root-finding problem
- Concave problems
 - FOC is also sufficient
 - Strictly concave: FOC is necessary and sufficient for a unique maximum

2 Two methods for solving DP problems

Value function iteration

- We have a number of theoretical results
 - Unique solution under quite general assumptions; hence...
 - It will always work (though possibly slow)
- We have tight convergence properties and error bounds
- It can be easily parallelized

A workhorse example: the stochastic growth model

The stochastic growth model

$$\max_{\{c_{t},k_{t+1}\}_{t=0}^{T}} \mathbb{E}_{0} \sum_{t=0}^{T} \beta^{t} u(c_{t})$$

s.t. $k_{t+1} = e^{z_{t}} k_{t}^{\alpha} - c_{t}, \ k_{t+1} \ge \underline{k}, \ c_{t} \ge 0$
 $z_{t} = \rho z_{t-1} + \epsilon_{t}, \ k_{0}, z_{0} \text{ given}, \ \epsilon_{t} \sim N(0,\sigma)$

can be written as

$$\max_{\{k_{t+1}\}_{t=0}^{T}} \mathbb{E}_{0} \sum_{t=0}^{T} \beta^{t} u(e^{z_{t}} k_{t}^{\alpha} - k_{t+1})$$

s.t. $k_{t+1} = \Gamma(k_{t}, z_{t}) = [\underline{k}, e^{z_{t}} k_{t}^{\alpha}]$
 $z_{t} = \rho z_{t-1} + \epsilon_{t}$

The stochastic growth model: Bellman equation

$$V(k,z) = \max_{k' \in \Gamma(k,z)} u(e^z k^\alpha - k') + \beta \mathbb{E}[V'(k',z')|z]$$

- V(k, z) stands for $V_t(k_t, z_t)$ and V'(k', z') stands for $V_{t+1}(k_{t+1}, z_{t+1})$.
- We can write the Bellman equation as

$$V = T(V')$$

where $T(\cdot)$ is the right hand side of the previous equation.

• Given an initial/terminal value for V' repeated application of the operator yields an approximation arbitrary closed to the true value function.

Normalization

• Before starting the algorithm it is a good idea to normalize the problem by replacing $u(\cdot)$ by its linear transformation $(1 - \beta)u(\cdot)$

$$V(k,z) = \max_{k' \in \Gamma(k,z)} (1-\beta) u(e^{z}k^{\alpha} - k') + \beta \mathbb{E}[V'(k',z')|z]$$

- Remember: expected utility is defined up to an affine transformation
- Advantages:
 - Stability: weighted average
 - Convergence bounds are easier to interpret
- We will not do this in what follows to simplify notation

Discretization

- We can evaluate the Bellman equations only at a finite number of points.
- If the state space is continuous we need to discretize it
 - Exogenous stochastic state variable
 - * Grid $\mathcal{Z} = [z_1, z_2, \dots, z_m]$
 - Endogenous state variables
 - * Grid $\mathcal{K} = [k_1, k_2, \dots, k_n]$
- Tradeoff
 - Accuracy vs curse of dimensionality

Choice of grid for endogenous state variables

- Ideally \mathcal{K} has to contain $\Gamma(k, z)$ for all z and "relevant" k
 - $-k_1 = \underline{k}$ but k_n is unknown if k is unbounded above
 - Choose large enough k_n and verify that it is never binding for the optimal choice.
- How to fill the interval $[k_1, k_n]$
 - Chebyshev nodes if polynomial approximation; otherwise...
 - Use economic theory and error analysis to assess where to cluster points
 - We usually want more grid points where value function has more curvature
 - Problem: just a heuristic argument, may be self-confirming

Choice of grid for exogenous stochastic variables

- Unless the stochastic process for z is already discrete (Markov chain) it has to be discretized.
- Nodes z_i and weights π_{ij} with $i, j = 1, \ldots, m$ with $\pi_{ij} = \Pr(z' = z_j | z = z_i)$.
 - Use appropriate quadrature nodes and weights if feasible.
 - Use approximate quadrature nodes and weights otherwise (i.e. trade-offs with persistent processes).

Implementation

- 1. Start with an initial guess
- 2. Apply the Bellman operator
 - (a) Compute the expectation (integration)

$$\tilde{V}(k',z) = \mathbb{E}V'[(k',z')|z]$$

(b) Compute the optimal policy (maximization)

$$\hat{k}' = \arg \max_{k' \in \Gamma(k,z)} u(e^z k^\alpha - \hat{k}') + \beta \tilde{V}(k',z)$$

(c) Replace for the optimal policy to obtain

$$V = T(V') = u(e^z k^\alpha - \hat{k}') + \beta \tilde{V}(\hat{k}', z)$$

3. Iterate on 2. until convergence.

Choice of initial guess (functional form)

• Finite horizon

$$- V'(k', z') = V_T(k_T, Z_T) = u(e^{z_T} k_T^{\alpha})$$

- Infinite horizon
 - $V'(k', z') = V^0(k', z')$
 - The better the initial guess the faster convergence
 - Good guesses
 - * Have same property as the solution (e.g. monotonicity, concavity)
 - * Value fn in deterministic steady state $\rightarrow V^0(k, z) = u(e^z k^{\alpha})/(1-\beta)$

Computing the expectation function (integration)

• Expected continuation value

$$\tilde{V}(k', z_i) = \sum_{j=1}^n \pi_{ij} V'(k', z_j), \quad i = 1, \dots, m$$

• In matrix notations

$$\tilde{V}(k', z_i) = \Pi_i \cdot V'(k')$$
with $\Pi_i = [\pi_{i1}, \pi_{i2}, \dots, \pi_{im}]$ and $V'(k') = \begin{bmatrix} V'(k', z_1) \\ V'(k', z_2) \\ \vdots \\ V'(k', z_m) \end{bmatrix}$

Computing the optimal policy (maximization)

- Most costly computational step
- Various methods
 - Discretized VFI
 - * forces both k and k' to lie on the discrete grid \mathcal{K}
 - Endogenous grid method
 - * force k' to lie on the discrete grid \mathcal{K} and solves for k that satisfies the FOC
 - Other methods
 - * Use numerical optimization algorithms

3 Discretized Value Function Iteration

Discretized VFI (maximization step)

• Finds optimum for the discretized problem by grid search

$$\max_{k' \in \mathcal{K}} u(e^{z_i} k_l^{\alpha} - k') + \beta \tilde{V}(k', z_i) \ i = 1, \dots, m, \ = 1, \dots, n$$

- Search over \mathcal{K} rather than $\Gamma(k_l, z_i)$
- Easily implemented on a computer.
 - Just write in vector form and find largest component
 - Global comparison method (nearly always works)
- True problem is not discrete though
 - Good approximation requires lots of points.
 - Curse of dimensionality
 - Tradeoff: speed vs accuracy

Implementing discretized VFI (summary)

- 1. Choose grids $\mathcal{K} = \{k_l\}_{l=1}^n$ and $\mathcal{Z} = \{z_i\}_{i=1}^m$
- 2. Guess a value function $V^0(k, z)$
- 3. For $l = 1, \ldots, n$ and $i = 1, \ldots, n$ compute

$$V^{k+1}(k_l, z_i) = \max_{k' \in \mathcal{K}} u(e^{z_i}k_l^{\alpha} - k') + \beta \sum_j \pi_{ij} V_k(k', z_j)$$

- 4. If $||V^{k+1} V^k||_{\infty} < \epsilon$ go to step 5; else got to step 3.
- 5. Stop (for a possible refinement see Step 3 on p. 413 in Judd).

Speeding up

- Monotonicity of policy function
- Concavity
- (Modified) Policy function iteration (aka Howard improvement)
 - Iterate on the Bellman equation for n-1 times keeping policy function fixed
 - Solve maximization step every n iterations.

4 The endogenous grid method

The endogenous grid method

- Recently proposed by Carroll (2006) and Barillas and Fernández-Villaverde (2007)
- Differentiable and strictly concave problems
 - uses FOC
- Can be extended to certain non-differentiable and non-concave problems

Background: maximization using FOC

• Euler equation

$$u'(e^{z}k^{\alpha} - k') \ge \beta \tilde{V}_{k}(k', z),$$

with equality if $k' > \underline{k}$.

• Envelope condition

$$V_k(k,z) = u'(e^z k^\alpha - k'(k,z))\alpha e^z k^{\alpha-1}$$

and

$$\tilde{V}_k(k',z) = \mathbb{E}[V_k(k',z')|z]$$

• The three equations define an operator $T(\tilde{V}_k)$ mapping a function \tilde{V}_k into a new function V_k .

– We are looking for a fixed point $\tilde{V}_k = T(\tilde{V}_k)$

Maximization using FOC (implementation)

- 1. Start with an initial guess $V_k^0(k, z)$
- 2. Apply the Euler operator
 - (a) Compute the expectation (integration)

$$V_k^n(k',z) = \mathbb{E}[V_k^n(k',z')|z]$$

(b) Compute the optimal policy (maximization)

$$u'(e^z k^\alpha - \hat{k}') = \beta \tilde{V}_k^n(\hat{k}', z) \text{ or } \hat{k}' = \underline{k}$$

(c) Replace for the optimal policy to obtain

$$V_k^{n+1}(k,z) = u(e^z k^\alpha - \hat{k}'(k,z))\alpha e^z k^\alpha$$

3. Iterate on 2. until convergence of \tilde{V}_k^n

Remarks

- The algorithm effectively iterates on the policy function k'(k, z) rather than the value function. It belongs to a class of algorithms known as "Time iteration".
 - Uniqueness of the solution follows from uniqueness of policy and value function.
 - We have no theoretical bounds for the error in the partial derivative of the value function \tilde{V}_k .
- Step 2.1 above is the usual one. Just apply quadrature.
- The main difference lies in the maximization step.
- Initially, we assume solution is interior in what follows.

Standard implementation of maximization step

- It is useful to define the intermediate state variable total resources $Y = e^z k^{\alpha}$
- For $z = z_i \in \mathcal{Z}$ and $k = k_l \in \mathcal{K}$ we have a grid point $Y_{il} = e^{z_i} k_l^{\alpha}$ for Y
- For all i, l, standard methods compute $k'(Y_{il}, z_i)$ solving

$$-(1-\beta)u'(Y_{il}-k') + \beta \tilde{V}_k(k', z_i) = 0$$

By construction $k'(Y_{il}, z_i) = k'(k_l, z_i)$

• The Euler equation is non-linear in k', hence costly to solve

Maximization step in the endogenous grid method

- Instead of making *current* k lie on a grid we solve for Y such that the optimal choice of future k' lies on a grid \mathcal{K} with $k_1 = \underline{k}$
- For each $z = z_i \in \mathcal{Z}$ and $k' = k_m \in \mathcal{K}$ compute Y_{im}^{end}

$$Y_{im}^{end} - k_m = u'^{-1} \left(\beta \tilde{V}_k(k_m, z_i) \right)$$

- Equivalent to standard methods as long as k' is invertible; but
- The Euler eq. is linear in Y_{im}^{end} ; no root finding!
- The set of pairs (k_m, Y_{im}^{end}) is the policy function $k'(Y_{im}^{end}, z_i)$ on the endogenous grid points Y_{im}^{end} for total resources.

Graphically

Recovering the policy fn on the exogenous grid

- The policy function $k'(Y_{im}^{end}, z_i)$ on the endogenous grid points for total resources Y_{im}^{end} implies a policy function $k'(k_{im}^{end}, z_i)$ where $Y_{im}^{end} = e^{z_i}(k_{im}^{end})^{\alpha}$.
- In general $k_{im}^{end} \notin \mathcal{K}$.
- To recover the policy function on $\mathcal{K} \times Z$ do the following
 - Construct the grid $Y_{il} = e^{z_i} k_l^a$ for all $z_i \in \mathcal{Z}, k_l \in \mathcal{K}$
 - For each (Y_{il}, z_i) "interpolate;" i.e.
 - * If $Y_{il} > Y_{i1}^{end}$ obtain $k'(k_l, z_i)$ by linear interpolation of $k'(Y_{im}^{end}, z_i)$ on the two most adjacent nodes $Y_{ip}^{end}, Y_{i(p+1)}^{end}$ containing Y_{il} .
 - * If $Y_{il} \leq Y_{i1}^{end}$, $k'(k_l, z_i) = \underline{k}$ Total resources Y_{il} are below the minimum level Y_{i1}^{end} for which the Euler equation holds as an equality at $k' = \underline{k}$

Implementing EGM (summary) I

- 1. Define grids \mathcal{K} and \mathcal{Z} . For each $z_i \in \mathcal{Z}$ construct a grid for total resources $Y_{il} = e^{z_i} k_l^{\alpha}$
- 2. Start with an initial guess $V_k^0(k, z)$
- 3. For each $z_i \in \mathcal{Z}$ and $k_m \in \mathcal{K}$
 - Compute the expectation

$$\tilde{V}_k^n(k_m, z_i) = \sum_j \pi_{ij} V_k^n(k_m, z_j) |z_i]$$

• Compute Y_{im}^{end}

$$Y_{im}^{end} - k_m = u'^{-1} \left(\beta \tilde{V}_k^n(k_m, z_i) \right)$$

Implementing EGM (summary) II

- 4. Recover $k'(k_l, z_i)$ by "interpolating" (k_m, Y_{im}^{end}) at the nodes Y_{il}
- 5. Replace for the optimal policy to obtain

$$V_k^{n+1}(k,z) = u(e^z k^\alpha - \hat{k}'(k,z))\alpha e^z k^\alpha$$

6. If $||V_k^{n+1}(k,z) - V_k^n(k,z)|| \infty < \epsilon$ stop; else go to 3.