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Abstract

Contrary to a peg, the sustainability of a currency band is enhanced by uncertainty
about the availability of a secondary reserve. Furthermore, the critical size of re-
serves necessary to support a target zone is a decreasing function of the band upper
boundary.

JEL Classification: F31, F32

Keywords: Target zones; Speculative attacks.

1 Introduction

It is a well known result in the literature on speculative attacks on fixed exchange rate

regimes that uncertainty about the availability of a secondary reserve does not affect the

timing and magnitude of an attack. As argued in Krugman (1979), provided the monetary

authority is credibly committed to defend the peg while reserves last, an attack aimed

at testing the availability of a secondary reserve is a one-sided bet. The exchange rate

does not appreciate if the peg is still viable after the attack, but speculators would make

foreseeable losses if they forwent the attack. Krugman (1997) has recently conjectured
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that the reason why we do not observe speculative attacks at the minimum hint of trouble

may be due to transaction costs or other microeconomic frictions.

This paper provides an additional explanation which applies to target zones. It shows

that, unlike a peg, uncertainty about the level of reserves committed to the defense of a

currency band increases its sustainability. In fact, attacking a target zone is not a one-

sided bet. Demand for real money balances increases and the exchange rate appreciates

to maintain money market equilibrium, if a secondary reserve turns out to be available.

This risk of appreciation induces speculators to postpone the attack.

We also show that, as the intervention parity increases, the expected loss from carrying

out an attack when the monetary authority can still defend the band in the post-attack

scenario increases faster than the expected loss from foregoing the attack. This implies

that, in the presence of reserve uncertainty and only in such a case, the critical reserve

size is a decreasing function of the band upper boundary.

2 The model

Assume that the exchange rate is described by the simple log-linear monetary model

s = m+ v + α
E(ds)

dt
, (1)

where s is the logarithm of the price of foreign exchange, α is a positive parameter and

E(.) is the expectation operator. m = ln(D + R) is the logarithm of the money supply,

with D domestic credit, assumed to be constant, and R the stock of foreign currency

reserves. v is a velocity shock (in logs) following a Brownian motion dv = σdz where σ is

a positive constant and z a Wiener process. We normalize the initial value of m to zero

and, for simplicity, follow Krugman and Rotemberg (1992) in assuming a one-sided band

with upper boundary s̄.

The monetary authority unilaterally defends the zone by infinitesimal marginal inter-

vention as long as it has enough reserves. So the composite fundamental m+ v follows a

regulated Brownian motion d(m+ v) = σdz − dU where U is a continuous, non-negative,

non-decreasing process, increasing only as long as the zone is in place and s = s̄. We
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normalize the lower bound on the primary stock of reserves to zero. Unless a secondary

reserve is available, the central bank has to abandon intervention and float the currency

as soon as R = 0.

The general solution to the functional equation (1) under our assumptions is given by

s = m+ v + Aeλ(m+v), (2)

where λ =
√

2/ασ2 and A is a constant to be determined. Assuming the initial stock of

reserves is sufficient to support the band and that the monetary authority commitment

is credible implies that the exchange rate path has to paste smoothly to the boundary of

the band. This uniquely determines the particular solution

s = m+ v − eλ[m+v−(m+v)]

λ
, (3)

where m+ v is the upper bound on the composite fundamental and satisfies the value

matching condition

s̄ = m+ v − 1

λ
. (4)

Once reserves have been exhausted, m = lnD and the exchange rate floats freely

according to

s = lnD + v. (5)

Since the monetary authority intervenes only when s = s̄, a speculative attack can only

take place at the zone’s boundary. Suppose that, with probability one, no secondary

reserve is available. Then, the band collapses under an attack as soon as the shadow

exchange rate given by equation (5) exceeds s̄, that is for any level of the velocity shock

above

v∗ = s̄− lnD. (6)

If this were not the case the exchange rate would jump in a foreseen way.

Since v is a continuous variable, the size of the speculative attack can be obtained by

evaluating equation (5) at s̄ and equating it to (4). Noticing that m = ln(D + R) before
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the collapse, the discrete fall in reserves is implicitly given by

ln(D +R∗)− lnD =
1

λ
. (7)

The quantity R∗, which is independent from s̄, is the minimum amount of reserves

consistent with a credible band. Only if the initial stock of reserves is strictly larger than

R∗, is the expected survival time of the band strictly positive if the system is started

at s = s̄. This is illustrated in figure 1, where the TT curve is the exchange rate locus

when reserves have reached the critical amount R∗ and the F ′F ′ line is the post-collapse

free-float locus described by equation (5). If the exchange rate is at its upper bound s̄,

the band collapses under a speculative attack which exhausts the remaining reserves R∗

in a stock-shift fashion, as soon as the velocity shock exceeds the critical value v∗. The

size of the change in (log) reserves in expression (7) is given by the horizontal distance

between the pre-attack free-float locus FF corresponding to the critical level of reserves

R∗ and the post-attack line F ′F ′.

[Figure 1 here]

3 Reserve uncertainty

Suppose now that with a strictly positive probability δ the central bank can resort to a

secondary reserve. The market finds out about the availability of this additional reserve

only after the primary one has been exhausted. For simplicity, we assume that the size

of the secondary reserve exceeds the critical amount R∗, so that the band is still fully

credible after a first unsuccessful attack.

If no secondary reserve is available after the first one has been depleted, the post-

attack exchange rate is given, as in section 2, by equation (5) corresponding to the F ′F ′

curve in figure 1. If, on the other hand, the monetary authority can still defend the band

after exhausting its primary reserve, the post-attack exchange rate follows equation (3)

with m = lnD. This corresponds to curve ZZ in figure 1.

Since a rational attack can only take place at a level of the velocity shock v consistent

with no ex ante expected jump in the exchange rate, it will be carried out at a level of
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fundamentals v∗∗ > v∗ in figure 1. If speculators launch an attack at v∗∗, with probability δ

they make an ex post loss equal to the vertical distance QU . The exchange rate appreciates

as a consequence of the attack since the demand for real money balances increases. With

the complementary probability (1 − δ) the attack results in an ex post gain equal to the

vertical distance PU. If δ = 1/2, as we assume in figure 1, then v∗∗ is determined by the

requirement that PU = QU . More generally, the expected gain/loss has to be zero.

So the shadow floating exchange rate is a weighted average of the post-attack exchange

rates under the two scenarios and is given by

s = lnD + v − δ
eλ[lnD+v−(m+v)]

λ
. (8)

v∗∗, the new critical level for the velocity shock, satisfies

v∗∗ = s̄− lnD + δ
eλ[lnD+v∗∗−(m+v)]

λ
, (9)

as the monetary authority intervenes only when s is at its upper boundary. Confronting

equations (6) and (9) it is apparent that v∗∗ > v∗, as long as δ > 0. Uncertainty about a

secondary reserve delays the timing of an attack, because it implies a positive downward

risk. Correspondingly, the size R̄ of the speculative attack is lower in the presence of

reserve uncertainty. By equating (9) to (4) and remembering that v is continuous one

obtains

ln
(
D + R̄

)
− lnD =

1

λ
− δ

eλ[lnD+v∗∗−(m+v)]

λ
. (10)

It is well-known that a more depreciated intervention level s̄ extends the expected

survival time of a target zone by raising the level of the fundamental v at which an attack

takes place. There is little a priori reason, though, to expect that the increase in the

expected survival time stemming from a positive probability of survival δ, or equivalently

the difference v∗∗− v∗, should be in any particular relationship with s̄. A higher interven-

tion parity s̄ increases both v∗∗ and v∗ with an ambiguous effect on their difference. Put

differently, a larger s̄ increases both the ex post expected depreciation PU (see figure 1)

in case a secondary reserve turns out not to be available and the expected appreciation

QU in the opposite case. Yet, it can be proved that the second effect prevails.
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Proposition 1 For a given degree of reserve uncertainty, measured by the probability δ

that a secondary reserve is available, the difference v∗∗ − v∗ is an increasing function of

the intervention parity s̄.

Proof. See appendix.

Proposition 1 states that the last term in equation (9) is an increasing function of

s̄. Since this term enters with a negative sign in equation (10), the proposition implies

that, in the presence of reserve uncertainty, the critical amount of reserves R̄ necessary

to support a band is a strictly decreasing function of s̄. For a given degree of uncertainty

δ > 0, the stock of reserves necessary to ensure a positive expected survival time if the

band is started at s = s̄ tends to zero for s̄ large enough. This result is new and applies

only in the case of uncertain reserves. It relies only on the assumption that the speculative

attack goes in the “right” direction; i.e. that the expected rate of currency depreciation is

higher if the band collapses than if it survives. It does not depend either on the assumption

of perfect credibility nor on that of a unilateral band1.
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Appendix: Proof of proposition 1

From equations (6) and (9) the difference between the level of fundamentals at which the

band collapses with and without reserve uncertainty, respectively v∗∗ and v∗, is v∗∗−v∗ =

δy, where

y =
eλ[lnD+v∗∗−(m+v)]

λ
. (11)

We need to show that y is an increasing function of the band size s. Differentiating (9)

with respect to s̄ results in

dy

ds̄
=

eλ[lnD+v∗∗−(m+v)]

λ

(
dv∗∗

ds̄
− d(m+ v)

ds̄

)
. (12)

The two terms in brackets can be obtained by differentiation of equations (9) and (4) and

are given by
dv∗∗

ds̄
= 1 + δ

dy

ds̄
(13)

and
d(m+ v)

ds̄
= 1. (14)

Replacing in equation (12) and rearranging results in

dy

ds̄
=

eλ[lnD+v∗∗−(m+v)]

(1− δ)λ
> 0. (15)
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Figure 1: Speculative attack with reserve uncertainty.
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