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1 Appendix: Stationary Equilibrium

Let zx
j ∈ Zx

j denote the state implicit in the recursive representation of the problem for

an individual of age j and type x, where x can take value s (student), n (worker out of

jail) and p (worker in jail).

For a given set of government policies {pen,G, sube, tl, tk} , tuition fees tuite and appre-

hension probability πp, a stationary recursive equilibrium is a collection of (i) policy func-

tions for consumption cx
j (zx

j ), saving ax
j+1(zx

j ), bequests b, education {isH(zs
0), isC(zs

jH
)} and

crime {τn
j (zn

j )}; (ii) value functions {V x
j (zx

j )}; decision rules

{K,HL, HH , HC} for firms; (iv) prices
{
r, wL, wH , wC

}
; (v) a victimization rate πυ; (vi)

an average labor income wh; (vii) time-invariant measures {µs
j , µ

n
j , } and Γ(a) that satisfy

the following conditions.

1. Given prices
{
r, wL, wH , wC

}
:

• for x = s, n the decision rules {cx
j (zx

j ), ax
j+1(zx

j )} and the value functions V x
j (zx

j )

solve respectively equations (13)-(15) for x = s, equation (16) for x = n and

j < jr, j ̸= jb, equation (18) for x = n and j = jb, equation (19) for j ≥ jr;

• the decision rule ap
j+1(zx

j ) satisfies equation (11) with ip = 1 and the associate

value function V p
j (zp

j ) solves equation (17);

• the decision rule b solves equation (18);

• the education decisions {isL(zs
0), isH(zs

jH
)} solve equations (12) and (15);

• the crime decision τj(zn
j ) solves equation (16).

2. Given prices
{
r, wL, wH , wC

}
, input demands {K,HL, HH , HC} maximize profits for

the representative firm

r = (1 − tk)(FK − δ)
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and

we = (1 − tl)FHe , for e ∈ {L,H,C}.

3. The asset market clears

K =
∑
j,x

∫
Zx

j

ax
j+1(zx

j )dµx
j .

4. The labor markets for each educational level clear1

He =
∑
j<jr

∫
{zn

j :e=i}

hj (θ, e)
[
1 − πpτ(zn

j ) − πpfτ(zn
j−1)

]
dµn

j , for i ∈ {0, 1, 2}.

where the supply of labor on the right hand side of the above equation is made up

only of individuals out of jail. In the calibrated model the prison term is strictly

between one and two years. It follows that in the stationary equilibrium, the number

of convicted felons in each age group j is the fraction (1 − πpτ(zn
j ) − πpfτ(zn

j−1)) of

workers that have not been arrested at age j or that, if arrested at age j − 1, have

not been released. To clarify notation, the argument zn
j−1 in the equation above is

meant as a function of zn
j such that zn

j−1 is identical to zn
j with the only exception

that asset holdings at age j satisfy aj = ap
j−1(zn

j−1).

5. The government budget is balanced

G+ E + PRIS + PENS = tk
1 − tk

rK + tl
1 − tl

∑
e

weHe.

Total government outlays on the left hand side of the above equation are the sum of

exogenous wasteful expenditure G, education subsidies E = ∑
j,i

∫
{zs

j :e=i} sub
i dµs

j ,

for i = {L,H,C}, aggregate prison expenditure2 PRIS = ∑
j<jr

∫
Zn

j
mπpτ(zn

j ))dµn
j

and aggregate pension expenditure PENS = ∑
j≥jr

∫
Zn

j
pen dµn

j .

1By Walras law, market clearing on all factor markets ensures that the goods market clears.
2In stationary equilibrium, the number of convicted felons in each age group equals a fraction πpτ(zn

j ))
of the corresponding number of workers.
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6. The victimization rate coincides with the crime rate

πυ =

 ∑
j<jr

∫
Zn

j

(1 − πpτ(zn
j ) − πpfτ(zn

j−1))dµn
j

−1 ∑
j<jr

∫
Zn

j

τj(zn
j )dµn

j ,

and equals the total number of crimes divided by the total number of workers out

of jail.

7. The average disposable labor income satisfies

wh =

 ∑
j<jr

∫
Zn

j

(1 − πpτ(zn
j ) − πpfτ(zn

j−1))dµn
j

−1 ∑
e

weHe.

8. The distribution of wealth at birth Γ(a0) equals the distribution of bequests

Γ(a0) =
∫

{zn
jb

:b(zn
jb

)≤a0}
dµn

jb
.

9. The vector of measures µ = {µs
0, ..., µ

s
j̄ ;µ

n
0 , ..., µ

n
j̄ } is the fixed point of µ(Z) =

Q(Z, µ) where Z is the generic subset of the Borel sigma algebra BZ defined over

the state space Z = ∏
j,x Z

x
j , the Cartesian product of all Zx

j . The mapping Q(Z, µ)

is the transition function associated with the individual decisions, the law of motion

for the shocks {χ, θ, v, ip, εe
j} and the survival probabilities {λj}.

2 Appendix: Computation and calibration

Let Z = {ξ, ν1, ν2, ν3, a, χ, α, β, ρθχ, κ, c̄} denote the set of calibrated parameters other

than the utility cost of studying parameters {ψH(θ), ψC(θ)}. Given a guess for Z,

{ψH(θ), ψC(θ)} and the vector of equilibrium prices {r, wL, wH , wC} we calibrate the

model in the following way.

1. We solve for the consumer decisions rules and value function and the representative

firm factor demand functions.

2. We simulate the model up to the age of the college choice and solve for the values of

{ψH(θ), ψC(θ)} that match the enrolment rates in the data. Using the new values
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as our new guess, we simulate again the economy up to the age of college choice

and iterate on this procedure until the values of {ψH(θ), ψC(θ)} converge.

3. We simulate the model at the remaining ages and compute the aggregate factor

supplies. We compare the marginal products of the four factors to our guess for their

prices. If the two differ by more than the specified tolerance, we adjust the guess

for prices and solve again the problem, starting from point 1. until convergence

(market clearing).

4. When factor prices have converged, we evaluate the loss function – the sum of

squared deviations of the model from the data calibration moments – at the simu-

lated model moments. We use a multi-dimensional optimization method to update

the guess on Z and continue to iterate starting from point 1. above until conver-

gence.

Concerning point 1. the decision rules and value functions point are computed using a

generalized version of the endogenous grid method developed in Fella (2014). The method

extends the original idea of Carroll (2006) to environments with non-convex choice sets.3

While the reader is referred to Fella (2014) for the details, we include here a brief

sketch of the algorithm in the context of a simple problem.

Consider an agent with a two-period lifetime who derives intra-period utility u(c, d)

from consuming quantity c of a continuous good and quantity d ∈ D = {0, 1} of a discrete

good. The utility function satisfies the usual regularity conditions and, for simplicity, the

Inada condition u′(0, ·) = +∞. The relative price of the two goods is one. The agent has

an initial endowment a of the continuous good. Both the (net) rate of return on storage

and the agent subjective discount rate equal zero. There is no borrowing.
3Barillas and Fernández-Villaverde (2007) extend the endogenous grid method to perform value func-

tion iteration in models with more than one control variable, but with a convex choice set.
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Figure 1: Solving for the conditional policy correspondence
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The agent’s problem in recursive form is

v(a) = max
a′∈[0,a],d∈D

u(a− a′ − d, d) + v′(a′) (1)

v′(a′) = max
a′′∈[0,a],d′∈D

u(a′ − a′′ − d′, d′)

a given.

It follows that v′(a′) = u(a′ − d̂′(a′), d̂′(a′)) with d̂′(a′) = arg maxd′∈D u(a′ − d′, d′).

The non-convexity of D, implies that, to the extent that d̂′(a′) is not a constant, v′(a′)

is neither concave nor differentiable and neither is the maximand and on the right hand

side of (1).

Yet, Theorem 2 in Clausen and Strub (2012) implies that if, for given a, (â′, d̂) is a

maximum for (1) and â′ is internal then â′ satisfies the Euler equation

uc(a− â′ − d̂, d̂) = v′
a(â′), (EE)

as v′
a(a′) can jump up but not down.4

4This implies that the value of the Euler equation jumps up at discontinuities of v′(a′). Therefore a
maximum cannot be located at a discontinuity.
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Figure 1 plots the right and left hand sides of equation EE as a function of a′ for

a given value of d, The left hand side is plotted for two possible values of initial assets

a. For given a, the intersection of the two curves is a candidate solution for the saving

correspondence a′(a|d) conditional on the given value of d. The contribution of Fella

(2014) concerns how to solve for this “conditional” saving correspondence a′(a|d).

In the standard approach, one fixes values for the endogenous state variable a at the

beginning of the period and solves the Euler equation forward for the associated values of

end-of-period wealth a′. Carroll’s (2006) endogenous grid method (EGM), instead, fixes

an ordered grid Ga′ = {a′
1, a

′
2, . . . , a

′
m} for end-of-period assets a′ and solve for the value

of initial wealth aend
i that satisfies EE for each a′

i ∈ Ga′ . for each a′
i ∈ Ga′ .5 This approach

is substantially faster as the Euler equation is often linear in consumption, hence in a,

but non-linear (and in our case not even continuous) in a′.

Since, given the non-concavity of the problem, a local maximum is not necessary

a global one, the algorithm modifies the standard EGM in the following way. First, it

partitions the set of grid points for future assetsGa′ into a non-concave region Gnc
a′ in which

the Euler equation is not sufficient for a global maximum for a′ and its set complement. In

terms of Figure 1, given the grid Ga′ and the derivative of the continuation value va(a′)

it determines the non-concave region Gnc
a′ as the set of grid points for which v′

a(a′) ∈

(vmin, vmax).6 Secondly, for all a′
i in the non-concave region, the algorithm supplements

EGM with a global maximization step.

More formally, given Ga′ , v′
a(a′) for a′ ∈ Ga′ and d

1. Determine the non-concave region Gnc
a′ . Initialize the counters i = 1 and l = 1

2. Solve EE for aend
i given a′

i using EGM.

3. If a′
i ∈ Gnc

a′ then

• find the maximizer of the discretized maximand for a = aend
i ; i.e. solve for

a′
g = arg max

a′∈Gnc
a′
u(aend

i − a′ − d, d) + v′(a′).

5In terms of Figure 1, at the grid point a′
1, for example, the EGM solves for the value of initial assets

aend
1 associated with the unique element of the family of upward sloping curves, indexed by initial wealth

a, that intersects v′
a(a′) at point a′

1.
6In Figure 1, Gnc

a′ = {a′
2, . . . , a′

6}.
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• if a′
g ̸= a′

i, a
′
i is not a global maximum. Move to the next grid point—i = i+1—

and go to 2.

4. Store the solution pair (aend
i , a′

i) as (aend
il
, a′

il
) = (aend

i , a′
i). As long as a′ is not the

last grid point, set i = i+ 1, l = l + 1 and go to 2.

5. Having solved for the conditional saving correspondence {aend
il
, a′

il
} on the endoge-

nous collocation points {aend
il

} solve for the conditional value function given d

vil
= u(aend

il − a′
il − d, d) + v′(a′)

6. Evaluate interpolating functions through (aend
il , a′

il) and (aend
il , vil) at a ∈ Ga′ to

obtain the conditional policy and value functions a′(a|d) and v(a|d) on the original

grid Ga′ .

7. Maximize v(a|d) over d to obtain d(a) and v(a).

In a longer (possibly infinite) horizon case, having obtained v(a) one would compute

its partial derivative va(a) and would work backwards.

Fella (2014) compares the accuracy and speed of the method to that of discretized

value function iteration (VFI)—the most commonly chosen algorithm for non-concave,

non-differentiable problems—using a saving problem with a discrete durable and a con-

tinuous non-durable choice. The discrete non-durable choice can take seven values, which

implies a number of potential discontinuities larger than in the current model. He finds

that the modified EGM algorithm has an accuracy, measured by the average Euler error

(in base 10 log points) over a simulated history, in excess of -5 already with only 200 grid

points for the continuous wealth variable. This is more than twice the accuracy of VFI7

for the same number of grid points.8

7The average Euler error, rather than the supremum of the Euler errors, is the sensible accuracy
measure in a model with discontinuities in the policy function, since, no matter how large the number of
grid points, the probability of interpolating across a discontinuity goes to one as the length of a history
increases. The Euler error when interpolating across the discontinuity is determined by the size of the
jump in the function.

8In fact, the modified EGM with 200 grid points is still two orders of magnitudes more accurate, and
70 times faster, than VFI with 1000 grid points.
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3 Appendix: College subsidy

The main policy focus of our analysis has been the effect of high school subsidization.

Such focus naturally relates to the existing literature—reviewed in Lochner (2011)—on

the effects of schooling on crime. In this literature a motivation for early intervention is

that the majority of property crime is committed by people with relatively low education,

and high school graduation has been proven effective in reducing crime.

In this appendix, instead, we analyze the effects of a policy that subsidizes college

completion. In particular, we consider a transfer paid to all people who enroll and

complete college. For comparability with the other policy experiments in the main body

of the paper, we consider a college subsidy that achieves the same general equilibrium

crime reduction as the high school subsidy equal to 8.8% of average earnings studied in

the paper. The size of the college subsidy that achieves the targeted victimization rate

of 5.2% is about 15.3% of average earnings.

Table 1 reports the effects (relative to the benchmark) of the college subsidy in both

partial and general equilibrium. In general equilibrium the policy costs as much as the

high school subsidy policy, but it induces a somewhat smaller welfare gain. Intuitively a

college subsidy provides less insurance against ex ante uncertainty, relative to the high

school subsidy, as it primarily affects high ability individuals marginal to the college

choice.

To understand what drives the general equilibrium response, it is instructive to con-

sider what the effect would be in partial equilibrium. The policy actually increases the

crime rate by almost 0.3 percentage points in partial equilibrium as it induces a very

large rise in college completion. The size of the subsidy, together with the relatively low

cost of college attendance in 1980, implies that college education becomes not only free at

the point of entry, but is associated to a non-trivial monetary transfer. Such large shift

in college completion, at constant prices, increases income inequality and the average

return from crime. In contrast, the high school subsidy actually reduces the crime rate

by a similar amount already in partial equilibrium. Therefore, all of the crime reduction

effects of the college subsidy are due to general equilibrium effects. These are even larger

than in the case of the high school subsidy, as the college subsidy substantially increases
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Table 1: College subsidy experiments. Subsidy as % of average labor income.

Benchmark COL Subsidy PE COL Subsidy GE

(1) (2) (3)
COL subsidy - 15.3 15.3
Prison sentence (months) 19 19 19
Crime victimization (%) 5.6 5.9 5.2
Arrest rate L (%��) 5.9 7.1 5.5
Arrest rate H (%��) 2.7 3.4 2.7
L share of criminals (%) 48 51.5 47
Output 100.0 - 101.6
Agg. Consumption 100.0 - 102.1
Welfare 100.0 106.3 103.1
Prison expenditure† 0.30 0.31 0.28
Subsidy + prison exp.† 0.30 0.88 0.51
Price L 100.0 - 102.4
Price H 100.0 - 102.3
Price C 100.0 - 97.9
† As a share of aggregate consumption in the benchmark.

the human capital price not only for high school dropouts, but also for high school grad-

uates. The resulting increase in earnings among the lowest two education groups raises

the opportunity cost of engaging in crime for those agents who are most likely to commit

crime. The difference between partial and general equilibrium is stark and highlights

the importance of general equilibrium adjustments, which would be the only anti-crime

justification for implementing such a policy.

Finally, one word of warning is necessary when assessing these results on the effects

of a universal college subsidy. The direct costs of attending college have been steadily

increasing over time, and continue to do so. As we mentioned above, a universal college

subsidy of 15.3% (the one considered in this experiment) would have resulted, in 1980, in

free college at the point of entry plus a yearly handout equal to roughly half the college

cost. The same proportional subsidy in 2000, when college tuitions were more than double

those in 1980, would instead have covered only between half and two thirds of the direct

cost of college.
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